

What Makes Poly So Special?

Poly API Corporation • info@polyapi.io • Modern Enterprise Middleware

Introduction

Since the inception of Poly, itʼs been a challenge to succinctly describe what Poly is to
people interested in evaluating it for their integration, API, and microservices development
needs, particularly for non-technical audiences. Thatʼs our fault. This short paper
articulates the essence of Poly. Remember that there is much more to the platform than
is described here. If, after reading this paper, the details outlined here make sense, you
will have an excellent foundational understanding of what Poly is. You will also understand
how a new platform is tackling 20-year-old incumbents seemingly overnight.

If after reading this paper you would like to learn more, take a look at our video series to
see Poly in action:

1. Building Integrations
2. Building Microservices
3. Innovation Series

Enjoy!

AUTHOR DARKO VUKOVIC
PUBLICATION DATE 3/8/24

Poly API Corporation • info@polyapi.io • Modern Enterprise Middleware

https://polyapi.io/building-integrations/
https://polyapi.io/microservices-and-ai/
https://polyapi.io/innovation-showcase/

Foundational Philosophy
Before getting into how we built Poly, it's essential to understand the thinking that went
into the foundational design principles of Poly. If this section is well understood,
subsequent sections will be much more manageable to rationalize and understand.

Egos and Integrations
The most significant architectural breakthrough in designing Poly came from the sacrifice
of our ego. Every platform always wants to be the center of its respective universe. By
definition, integration is the space between different applications and services. Hence, an
integration platform that aims to be at the center of everything is an arrogant
oxymoron.

We built an integration platform by creating as little as possible. We decided to take an
approach where we integrated all the best technologies to work together and only to fill
the gaps between them where either they lacked a seamless integration or needed more
capabilities.

If you find yourself grappling with the concept of Poly, that's completely understandable.
Our approach is unconventional: Poly isn't a platform with a traditional core. Instead, it
acts as the invisible yet essential bond that unites various existing services, which we will
explore in the next section.

David and Michelangelo
Consider the story of Michelangelo and his creation of David. Legend has it that when
asked how he crafted such a masterpiece, Michelangelo reputedly said, "I saw the angel
in the marble and carved until I set him free." This resonates deeply with our philosophy in
developing integrations. Our goal with Poly is to focus intently on the essential – the
'angel' in the software – and to systematically remove the overhead.

Gripping Poly is also challenging in part because it is a strongly opinionated development
approach, developed from decades of accumulated experience, in addition to new
necessary tools and services to implement this approach effectively.

Poly API Corporation • info@polyapi.io • Modern Enterprise Middleware

Inheritance
In this section, we'll explore the core technologies that form the foundation of Poly,
illustrating how each contributes to the platform's capabilities. If you are only interested
in the capabilities developed by Poly, please skip to the next section. By virtue of the
architectural strategy to ensure as perfect alignment with modern enterprise architecture
as possible, we selected a set of platforms, applications and tools as the foundational
basis of Poly. These technologies are a starting point on top of which we developed
additional new services. Each of these technologies has potentially multiple alternatives
which are both good and popular, so over time we aim to add support for more and more
components to ensure we cover more and more combinations used by our customers.

Leveraging these established technologies has provided Poly with a significant
developmental advantage, akin to beginning a marathon at mile 20. Often industry experts
are amazed with how mature and robust Poly already is, and we have to give credit to the
millions of people who have cumulatively contributed to the underlying technologies we
leverage.

One correct definition of Poly is: an integration of the most powerful development tools
and technologies plus an additional Poly built services to specialize this composite
platform for enterprise integration, microservice, and orchestration development. We
selected these technologies based on over 200 interviews we did market research in this
domain. Below is the list of explicit technologies used.

Kubernetes & Tools
Poly is Kubernetes native. Whether run in AWS, Azure, GCP; operated by us, partners, or
customers; Poly runs in Kubernetes with as minimal of a dependency on the cloud as we
were able to engineer. Poly is hence cloud agnostic and can be easily self hosted by
customers. All tools used to deploy, update, configure, and operate Kubernetes are hence
implicitly usable in administering Poly. It also ensures that Poly and all integrations,
microservices, orchestrations are infinitely scalable.

KNative
Within Kubernetes, KNative is our out-of-the-box option for running integrations,
microservices and orchestrations built in Poly. Where it makes sense, integrations,

Poly API Corporation • info@polyapi.io • Modern Enterprise Middleware

microservices, and orchestrations should be deployed as serverless functions. With
integrations, this is a really nice model as it allows for editing and updating individualized
flows without risking other integrations.

Programming Languages – TS/JS, Python, Java
Using native programming languages allows developers to create complex integration and
orchestration logic in superior form. While most integrations can be kept to simple code,
having higher-order programming capabilities available when needed is essential. It also
means that experienced programmers are proficient in developing with Poly on day one.

Poly is unique because the output is still a native application that runs in the runtime
environment of each respective language. All generated clients are just native files. No
particular runtime, language, compiler, or tooling is needed. Similarly, any additional
libraries and SDKs the developer wants to use are also implicitly compatible with Poly.
Poly applications can be deployed either as standalone applications or to KNative (within
Poly) with no alteration to the code. This provides for a seamless SDLC flow going from
mocking to implementation, testing, production, and depreciation. Likewise, all the tooling
around intelli-sense, compilation, linting, source management, automated testing, etc… is
implicitly usable with all applications leveraging Poly functions. The following
language/framework we are adding support for is .NET.

VS Code
VS Code is a free IDE with an excellent extensibility framework. By poly normalizing into
standard programming, we leverage all the tools of VS Code for developing, managing,
debugging, running, etc., poly applications. VS Code also has a great extensibility
framework, which we used to build additional tools for easier API Discovery, consumption,
and development. Next in line is to create the same extensions for IntelliJ.

OpenAI
As part of our service, we leverage OpenAI base models and embeddings. OpenAI is a
leader in general-purpose AI services. By extending OpenAI's capabilities, Poly implicitly
can support developers in quickly generating code and debugging issues. We don't have
a set roadmap for additional providers now; this will be customer-driven as customers
select their AI providers.

Hashicorp Vault
We selected the open-source Hashicorp vault as the first Vault to support it. It's packaged
and delivered with Poly and securely stores and manages credentials and secrets. We

Poly API Corporation • info@polyapi.io • Modern Enterprise Middleware

leveraged standards to interface with Vault to ensure we can easily add support for
customer-supplied vaults in Azure, GCP, and AWS.

Postgres and Redis
We leverage two prevalent and robust technologies as our persistence and caching
layers. These technologies come with capabilities such as auto encryption, cache
management, etc.… Poly generally provides these services in an isolated deployment.
However, it can also leverage existing instances for customers who already have them
provisioned in their cloud environments.

Postman and OpenAPI Specifications
Postman has become the de facto console for developers to try out APIs. OpenAPI
specifications are the de facto standard for documenting APIs in a human—and
machine-readable format.

Additional Near-Future Technologies
We see opportunities shortly to add new classes of technology to improve the
developers' experience further. Specifically, we are looking closely at GitHub Copilot
Chat, git-based version control systems, and event subscription systems. The current
technologies are just the beginning of implementing our vision.

We saw Poly in these foundational technologies just as Michelangelo saw David in the
marble. Our task was skillfully integrating and enhancing them, carving out a platform
optimized for enterprise integrations, APIs, microservices, and orchestrations. Our first
challenge was incorporating them into a unified deployment architecture on Kubernetes.
Second, we had to integrate them to become a unified development platform. The last
challenge was to fill in the gaps with missing tools and services (detailed in the next
section) needed to create an end-to-end seamless development platform optimized for
integrations, APIs, microservices, and orchestrations.

Poly API Corporation • info@polyapi.io • Modern Enterprise Middleware

Additional Poly Services
Beyond integrating the foundational technologies, we developed the following tools and
services to multiply the productivity gains with Poly. As each service is as seamlessly
integrated as possible, itʼs hard for an untrained eye to recognize them as new
developments. Compounding that challenge is that many of these tools have simplistic
interfaces, such as command lines, or they run behind the scenes as services. With these
developed services, we could harness and direct the capabilities of the underlying
open-source technologies to unify them into the ideal enterprise integration
development platform.

Catalog
The core data of Poly is where all APIs, custom functions, server functions, webhooks,
triggers, jobs, etc… are stored. We also have additional client services and Postman
extensions for interpreting OpenAPI Specs, runtime API calls, deploying functions, etc… to
ingest and populate this catalog with information about APIs being produced or
consumed by an enterprise, microservices, and client functions developed with Poly,
event listeners and over time more. None of the other services would be possible without
these catalog services and the data within. This service ensures that enterprises
accumulate essential information in a centralized repository to ensure no institutional
knowledge loss over time.

Proxy
A server that runs and performs critical operations such as translating SDK calls into API
requests, receives webhook calls and delivers events via WebSockets and triggers, raises
alerts on errors, and more. This service plays an essential runtime role and allows for
many developer experience implications, such as the universal SDK, event streaming, and
runtime observability.

SDK Generation
A combination of server-side operations and language-specific clients that generate
universal SDKs in TS/JS, Java, Python, etc. Generated SDKs can contain API passthrough
functions, custom client-side functions (referred to as utility functions), server functions
(a la RPC, although they use HTTPS, webhook event handler functions, variable

Poly API Corporation • info@polyapi.io • Modern Enterprise Middleware

access/reference/update functions, and more. The contents of the SDK can include the
entire enterprise catalog or be scoped at the time of generation, and customers can
decide to expose the SDK generation services or publish specific versioned SDKs. With
these SDKs, developers can develop confidence in the correct models of the underlying
enterprise systems.

AI Agent
Leveraging the catalog via a custom developer RAG orchestration with OpenAI Poly offers
a practical “GPT4 Turbo trained on your APIˮ service. It can help find the proper
operations and generate highly accurate answers since it has insight into the exact
specifics of the API operation, webhook event, or custom function. We chose an RAG
model here due to the infinitely scalable architecture, the dynamic nature of the catalog,
and the optionality to use other AI providers per customer. The AI agent boosts developer
productivity in discovery, development, and troubleshooting.

Serverless Functions
KNative is a container management platform that automatically scales up and down
containers. This has two significant benefits: extremely efficient resource utilization and
inherent scalability. We extended this service to add deployment management,
cataloging, container image generation, log collection, and externalized triggers.
Serverless functions drastically increase reusability and allow for faster deployment to
production as the runtime environment is pre-approved and implicitly designed for infinite
scaling.

Credential & Config Management
Our research found that a ton of time is lost waiting for access to systems, security
reviews, and ensuring that security standards are met. We designed “Variˮ to be the
antidote to this loss of productivity and to help CSIOs sleep better at night. Vari ensures
credentials are stored in an encrypted vault and never exposed to developers or client
applications (integrations) at runtime. Vari allows for credentials to be modeled and used
within code as references.

Operational Services
There are too many additional medium-sized features to enumerate here, but please note
that in addition to the core functionality described above, there are many tools to further
streamline enterprise integration development and operations not listed here that
contribute to monitoring, self-remediation, compromise detection, reusability, and
efficient development and integrations.

Poly API Corporation • info@polyapi.io • Modern Enterprise Middleware

Conclusion
We hope this paper provided you enough of an overview to understand that Poly is not
just “another integration platform .ˮ We hope you can now articulate the message that Poly
is an integrated development platform, built on top of the most robust enterprise tools,
extended with specialized capabilities to turn 8-month integration projects into 8-week
projects. If Poly is something you would like to learn more about, please do not hesitate to
reach out at info@polyapi.io.

Thank you,

Darko Vukovic
CEO & Founder of PolyAPI

Poly API Corporation • info@polyapi.io • Modern Enterprise Middleware

	
	
	
	
	
	What Makes Poly So Special?
	
	Introduction
	
	
	Foundational Philosophy
	
	Egos and Integrations
	David and Michelangelo

	
	Inheritance
	Kubernetes & Tools
	KNative
	Programming Languages – TS/JS, Python, Java
	VS Code
	OpenAI
	Hashicorp Vault
	Postgres and Redis
	Postman and OpenAPI Specifications
	Additional Near-Future Technologies

	
	
	Additional Poly Services
	Catalog
	Proxy
	SDK Generation
	
	AI Agent
	Serverless Functions
	Credential & Config Management
	Operational Services

	Conclusion

