
Migrating away from MuleSoft
This document addresses some common, high-level questions about migrating away from
MuleSoft. We explain why companies are migrating away, what the new destination
system’s capabilities should be, recommend a migration process, and explain how Poly
differs from MuleSoft. We intentionally wrote the first three sections of this document to
be agnostic of the platform selected to replace MuleSoft. The fourth section is our biased,
shameless plug for our platform.

We hope all readers will benefit from the first three questions, regardless of which
platform is ultimately selected to replace MuleSoft. All the statements about MuleSoft are
obtained from eight current customers of MuleSoft who are either migrating or preparing
a plan to relocate and a few customers who have evaluated MuleSoft but ultimately
decided not to adopt it. The authors, with their intimate knowledge of MuleSoft, have
conducted thorough research to present this document as unbiased as possible and to
purely represent the voice of these customers.

As a disclosure, I (Darko Vukovic) am a former employee of MuleSoft with no current ties
to the company. Our lead Investor from DIG Ventures is Ross Mason, the founder of
MuleSoft. This paper does not represent Ross’s views or opinions about MuleSoft in any
capacity.

Poly API Corporation • info@polyapi.io • 650.485.9634 • IPaaS Delivered



Why migrate from MuleSoft?
Mulesoft emerged as a pivotal early innovator in the Integration Platform as a Service
(PaaS) sector. However, as time has progressed, an increasing number of organizations
have recognized significant drawbacks to using Mulesoft:

Cost of License
The loudest complaint is around the absolute cost of the licenses and significant price
increases at contract renewal time. The customers we spoke with feel they must pay
more for MuleSoft and get value to justify the ever-increasing cost. They are eager to look
at an alternative that controls license costs and helps them reduce the overall cost of
solving their integration and microservices development problems.

Pricing Model
Another common complaint is around the VCore pricing model itself. Customers claim that
it's hard to predict the cost over time, and the need to purchase VCores in sets adds
unnecessary spending. Customers who start gaining traction with MuleSoft find
themselves with runaway costs that sometimes run ahead of the value gain. We have also
heard complaints about MuleSoft demanding payment of the entire contract up-front and
pushing to longer-term contracts with no options for cancellation.

Cost and Availability of Labor
While some customers who have experienced MuleSoft developers have told us that it's
"straightforward to develop in MuleSoft," we have also met several customers who have
been unable to build enough critical knowledge in-house to use MuleSoft effectively. This
is mainly due to MuleSoft's programming/configuration language, IDE, runtime
environment, and operations platform, all proprietary and specialized skills. These
customers have had to rely on professional services and SIs to develop relatively simple
MuleSoft applications. These Mule "experts" come with the additional overhead of
contract management, margins, minimum contract sizes, retainer fees, etc.… which
further exacerbates the costs of developing on MuleSoft.

Technical Alignment with Development Processes and Tooling
The more technically savvy customers with in-house development teams also desired
more alignment between their core development and approach and that of MuleSoft.
MuleSoft should architecturally align with their infrastructure, deployment, delivery
models, source management, coding patterns and practices, and operations tooling and

Poly API Corporation • info@polyapi.io • 650.485.9634 • IPaaS Delivered



processes. They feel MuleSoft is too much of an island compared to their core
development infra and tools. Customers want to embrace more modern and standardized
infrastructure, runtime, and development technologies.

Developer Productivity
While not a top complaint, customers also felt that there were some mundane and tedious
aspects of development with MuleSoft. A few cited examples are modeling of services for
which there are no box connectors (most services); dealing with customized object
models in enterprise systems; the ability to log, debug, and monitor services; building
multi-tenant integrations with credentials in a vault; and building/managing reusable flows
which are not instantiated as a separate service (due to VCore pricing constraints).

Poly API Corporation • info@polyapi.io • 650.485.9634 • IPaaS Delivered



What constitutes a good replacement?
A sound replacement system must be able to implement all of the core
integrations/orchestration development/API management use cases and development
patterns needed by a modern enterprise. It should be optimized for modern development
but must cater to legacy application integration/development. It should align well with
modern development infrastructure, tooling, practices, and security standards. Its
business model should be transparent, its pricing should be reasonable and predictable
and more accurately represent the value delivered by the platform. Below, we outline
more details about each essential requirement for a MuleSoft replacement system.

Key Integration, Service Development, API Management Use Cases
In the author's opinion, all eight patterns MUST be addressed as suitable replacements
for MuleSoft. An enterprise today may only implement some of them, but in an effort to be
futureproofed, we highly recommend that you evaluate a platform’s ability to implement all
seven patterns. It's entirely possible to select multiple platforms to replace MuleSoft, but
the author's STRONG opinion is that there is a massive advantage to using only a single
atomic platform. This is because integration, services development, and API management
are manifestations of the same underlying capability. To be clear, there are some
advantages to buying all the needed platforms from a single vendor. However, we strongly
recommend that the customer seek out a SINGLE PLATFORM, not just a single vendor. We
give credit to MuleSoft for understanding this and realizing the Anypoint Platform. Below
are all the core patterns that the new platform, in our opinion, must implement. Note:
some use cases may require multiple patterns as part of the solution.

Managed Connection - aka “API gateway” pattern
An approach to develop loose coupling, manage access, standardize authentication and
authorization, observe usage, detect operational issues, and meter access.

Backend Orchestration - aka “orchestration” or “composite App” or “legacy
modernization” pattern
They are used when a new interface or additional logic is needed, generally due to
transformation or orchestration across multiple backend systems, enterprise-specific

Poly API Corporation • info@polyapi.io • 650.485.9634 • IPaaS Delivered



business logic, or mediation of protocols/data formats. It also scopes down data access,
masks fields, or programmatically inserts additional data.

Frontend MicroServices - aka "presentation APIs" or "single purpose APIs" pattern
They are built for specific clients needing specialized APIs to be adequately constructed
and agnostic of backend systems. For example, a backend to a mobile application
requires a standard data model, authorization model, resource structure, etc… to be easy
to develop and maintain over time. Generally, front end developers or partner developers
are not experienced and productive when working directly with most enterprise backend
systems. This approach can also be used to build specific APIs for important partners
where they drive the interface contract, which needs to be adhered to.

Event Stream Integration - aka “event-based sync” or “async API” pattern
These integrations are triggered by events originating in other systems, such as
webhooks, Kafka messages, or GraphQL Subscriptions. These events are listened for and
configured in the source system to be sent to the IPaaS, where they must be captured,
acknowledged, and processed. These events come in the structure of the origin system
and generally must be converted to an internal data model.

Poly API Corporation • info@polyapi.io • 650.485.9634 • IPaaS Delivered



Event Subscription Pattern - aka “webhook” or “callback” pattern
Clients sometimes want realtime delivery of events from backend systems when states
change. The archaic way of this is via polling. A platform must be able to provide clients a
way to subscribe to published events occurring in the enterprise systems. How the
platform gets the events may vary from webhooks, Kafka events, GraphQL subscriptions
or other protocols. The delivery of those events by the platform to clients should ideally
be both easy and consistent regardless of what the event origins within the enterprise
systems are.

Queue Based Integration
An essential but often overlooked pattern where a queue is used within an integration.
These integrations generally have an event or request listener, which is scalable to handle
a mass influx of burst traffic and persist it to a scalable queuing technology. On the other
side of the queue are one or more separate processors that optimize for batching to
enterprise systems and self-throttling to avoid overloading downstream systems.

Batch Data Synchronization - aka “data migration” pattern
They are used for synchronizing large data sets periodically or migrating data from one
system or instance to another. It is beneficial as a tool for companies with multiple
instances of the same technology, when decommissioning and consolidating systems,
acquiring new companies, or to implement processes that involve large data sets with
latency affordances. Many times, one or both sides of these integrations are databases;
the IPaaS system must be able to support this. Generally, these synchronization
processes are scheduled or triggered by an API call or event and can be one or two way.

Poly API Corporation • info@polyapi.io • 650.485.9634 • IPaaS Delivered



SDK and Client Proxy - aka “SDK generation” pattern
A pattern to simplify integration and application development where SDKs are provided to
client developers to offer a much easier experience in building integrations in their native
programming languages. This is especially helpful when the client developers are not
experienced in the business domain of the enterprise APIs, the backend systems are very
industry-specific and complex, and the backend systems are not well documented. One
essential capability here is to develop utility functions that help client developers with
bespoke orchestrations and complex non-business logic development.

Catering to Legacy Applications
Legacy applications are, by definition, legacy because the original creators have either
placed them into maintenance mode or have altogether stopped investing in them.
Vendors may have previously developed these systems, or they may be in-house built. It’s
unrealistic to expect new vendors to provide first-class support for them on new
integration platforms. However, these systems still play a vital role in operations for many
companies and will continue to do so for a long time; therefore, as a prospective customer
of an integration platform, it’s perfectly reasonable to demand support for integrating with
and orchestrating against these systems with some affordance on the expected
experience to do so. We believe that a comprehensive IPaaS must seamlessly
accommodate both legacy systems and modern tools within a single platform. The
approach of using separate integration systems — one for legacy systems and another
for new technologies — does not constitute an acceptable solution in our opinion, as it
does not generate the cost and labor savings customers deserve. This stance applies to
any scenario involving multiple integration implementations.

Poly API Corporation • info@polyapi.io • 650.485.9634 • IPaaS Delivered



Alignment with Modern Development Infra, Tools, Processes
An IPaas should align with modern development tools, infrastructure, and processes. The
degree to which it does should be used as an evaluation criterion in selecting a winner.
Below are the critical categories by which a vendor should be evaluated.

Infrastructure
The entirety of the platform, runtime and management services, should be Kubernetes
native, and a customer should have a choice in either running it entirely in the customer’s
Kubernetes environment or using it as a Platform as a Service (PaaS). If the service is not
Kubernetes native, the service should at least be hybrid where the runtime is decoupled
from the management service. We believe any service that is neither Kubernetes Native
nor hybrid should be disqualified.

Runtime Technology
The platform runtime should be built on proven open-source technologies with a large
developer community. The vendor must articulate strictly which technologies are used
and in which capacity they are utilized. Ideally, the runtimes are offered in all three
formats: Kubernetes native services, as standalone applications, and as a PaaS offering.
In our opinion, proprietary runtime should be avoided if possible.

Infra Provisioning and Upgrades
If the customer runs the whole service within their cloud, the service should be easy to
maintain and operate. There should be Helm charts, or equivalent scripts, to make
deployment and upgrade easy and seamless. The application should be cloud-agnostic
and easy to run on AWS, Azure, and GCP. Ideally, there should not be any cloud-specific
services used. If there are, the vendor should provide a roadmap to eliminate those
dependencies or a thorough justification for why they are needed. The vendor should
offer an affordable, fixed bid for managing the service on behalf of the customer with a
detailed list of the permissions necessary to operate.

Development and Operations Tools
Ideally, the platform should be lined up with the development tools loved by developers
who have emerged as winners. Ideally, developers get to use the tools they love, and the
customer benefits from more productive and happier developers. Customers will in turn
experience easier recruiting and onboarding of developers for their integration projects.
For development, these tools notably include, but are not limited to, VS Code, IntelliJ,
Postman, NPM, PIP, Maven, and Gradle. And for operations, these tools include KubeCTL,
Helm, Prometheus, Grafana, Terraform, Loki, and equivalents.

Poly API Corporation • info@polyapi.io • 650.485.9634 • IPaaS Delivered



Development Languages
In terms of community and enterprise adoption, the four proven winning languages are
TypeScript (Node), Python, Java, and C# (.NET). The IPaaS should support all four
languages to develop new runtime microservices and support client developers
consuming APIs produced and managed by the platform. If all four are not supported, at
least Java or Javascript should be supported, given their wide popularity within
enterprises. Custom and configuration driven languages should be highly avoided.
Beyond the argument of developer productivity, availability, and happiness, custom
languages will face a significant disadvantage with the rise of AI. AI is trained in
open-source languages and exhibits ever-increasing accuracy and competence and in our
opinion will eclipse proprietary languages.

The advent of advanced tools like Github Copilot and Tabnine underscores the
significant edge that proficiency in programming languages familiar to Large Language
Model (LLM) AI systems offers. Developers skilled in mainstream languages such as
Java and Python, as opposed to proprietary languages like Mulesoft's DataWeave,
position themselves at a considerable advantage. LLMs demonstrate an exceptional
understanding of these widely used languages and are continuously improving in their
ability to suggest accurate and efficient code snippets, making fluency in these
languages increasingly beneficial.

Source Management
All coding performed to build integrations or orchestrations should be subject to the same
development procedures as regular application development. This means that a
developer should be able to commit code to source management, perform code reviews
in collaboration with other developers, handle merge requests, manage contributors, run
linting rules, develop and run unit tests, etc… on any code they produce. At a minimum,
the IPaaS should allow any programmatic or configuration-driven code to be managed
with a GIT-based source management system.

Deployment Automation
When microservices are developed, a developer should be able to test them locally in
their IDE and manually deploy them to dev/test environments. Beyond that, the customer
should use a CI/CD pipeline to build from source and deploy to their UAT and Production
environments. An IPaaS should support a seamless deployment model for all three stages:
local testing, manual deployment to dev environments, and automated deployment to
production.

Poly API Corporation • info@polyapi.io • 650.485.9634 • IPaaS Delivered



Credentials Management
At a minimum, the IPaaS should either include an industry-recognized vault as part of
their service or be able to integrate with one offered by the customer (ideally both). In our
opinion, credentials used by integrations must be stored in an encrypted vault managed
by a DevOps or SecOps team. Ideally, the IPaaS offers features to allow for implicit
isolation of credentials across and a feature to pass credentials by reference, where a
developer or the client application never handles credentials.

API First
We believe the IPaaS should have an API for every capability of the IPaaS, and the APIs
should be top-notch in design and architecture. Any vendor with poor quality or missing
APIs should be doubted on their ability to execute and fundamental understanding of the
domain. Ideally, the vendor should also supply SDKs for their APIs.

Transparent Business Model and Predictable Pricing
We believe it's disrespectful to employ the "land and expand" business model where
prices used to win an initial contract are not then honored for many years. It's one thing to
list the list price and offer a heavy, stated discount, and another to provide list pricing,
which increases by a double-digit percentage at renewal. Price increases should trend
with inflation, and value increases in the product should be offered as add-ons for those
customers who prefer to keep their costs as flat as possible.

Pricing should be usage based, or at least approximate usage or value delivered. Any
metric used to set price should be intuitive and aligned with a customer's business
metrics. In an ideal world, customers should be able to pick their own metrics and
vendors should set the price per unit of that metric.

In our opinion, technology prices should trend lower over time as the customer base
grows and the same IP is amortized over a larger customer base. Additionally, any vendor
that has a track record of raising prices, of not offering new capabilities as add-ons, that
took on large VC rounds, that expends a great deal on sales commissions, marketing, and
facilities should be viewed cautiously as their likelihood of raising prices will be far more
significant, especially in a challenging economic climate, than a vendor that does not
exhibit those behaviors.

Customers should be able to model out pricing for a very long time, potentially a decade,
using a number close to the Consumer Price Index (CPI) as a cost increase benchmark.
Vendors should be willing to contractually include maximum price increases for existing

Poly API Corporation • info@polyapi.io • 650.485.9634 • IPaaS Delivered



functionality and options to renew at pre-negotiated prices. Infrastructure costs should
be made clear to customers by vendors and not represent a hidden markup. Lastly,
Vendors should ideally be willing to use a metric set by the customer for establishing
pricing, assuming it's easy to obtain and verify.

Ability to Execute the Migration
The selected partner should be able to own and deliver the migration from MuleSoft to
their new platform. At the very least, the vendor should foster introductions to partners
who can deliver migration projects. Not all customers may need this service, but for those
without inhouse development teams, this offering is essential. There are a few core skills
a customer should ensure the vendor or their recommended partners MUST have.

Strategic Project Planning
An ability to create project phases, goals, deliverables, and estimations. A coherent
understanding of each of the steps involved and deliverables at each step. We
recommend that the customer interview the delivery team and ask for a high level plan for
all the phases and a detailed plan for the execution of a single phase. There are a lot of
people who can do either of those things, but few who can do both really well.

Ability to Understand MuleSoft Implementations
Since the migration will be from MuleSoft, an ability to understand in detail what has been
done is required. This skill will benefit the customer to ensure continued operation as well
as reducing the cost to rebuild on a new platform. MuleSoft being proprietary means that
the work done on MuleSoft cannot be ported over, and hence will need to be
re-developed. An ideal partner can ensure continued operation of the flows, while
proposing opportunities to improve the integration implementation while doing the
rewrite. We believe that the largest potential cost variance will come from a partner's
ability to easily understand what is already working in production and how it works.
Partners that fail to do so will inherently produce lower quality work. We recommend
looking for partners with either ex-MuleSoft services employees or ex-MuleSoft
developers who are also proficient in the new technology.

Ability to Operate and Develop on the New Platform
Any new platform chosen will also have an operational need. We recommend that
customers test the vendor or delivery partners for an understanding of what it takes to
run the new platform in production, common failure points, and the ability to own the
operation of the platform. This is essential as someone developing for a platform that they
don’t know how to operate is a recipe for poor monitoring, troubleshooting, and incident
resolution.

Poly API Corporation • info@polyapi.io • 650.485.9634 • IPaaS Delivered



What does the migration process look like?
There are five high-level phases we recommend in replacing MuleSoft:

1. Select a replacement
2. Replace a few representative integrations
3. Use replacement for all net new integrations
4. Migrate remaining projects
5. Decommission MuleSoft

Each of these five phases has a clear and stated goal, and they should be done
sequentially to minimize disruption and cost to the customer. It's essential to remember
that MuleSoft overall is a good product that serves an essential purpose, and that new
products that replace it implicitly introduce a degree of risk that needs to be carefully
accessed. We believe that a customer should not rush this process and that a steady,
methodical approach is required.

Phase 1 - Select a Replacement
The key outcome of this phase is to identify one or more suitable replacements for
MuleSoft. An acceptable outcome is simply verifying the non-existence of a suitable
replacement for the customer's needs.

Using the criteria outlined in the previous section, an enterprise should assemble a team
of at least a developer, enterprise architect, security architect, and business stakeholder
to identify the set of vendors which will be considered as a potential replacement
product. Each enterprise will have its own team composition, but we recommend that at
least those four skills be represented in the evaluation team to make a good decision. This
team should first assemble a list of known leaders and up-and-coming vendors. The
known leaders will be documented in Analyst reports, but the up-and-coming vendors will
require more work to identify.

We recommend contacting reputable VC firms, specifically those founded by
Ex-Executives of the top IPaaS vendors, such as DIG Ventures, or ones that led the
investment in the current winners, such as LightSpeed Ventures. Additionally, we
recommend contacting leading analysts at firms like Gartner and asking them for their
opinions on upcoming vendors catering to the use cases described in the previous
section. Some notable analysts include Mark O'Neill, Gary Olliffe, and Max van den Berk,
and the cost of the consultation will be money well spent.

Poly API Corporation • info@polyapi.io • 650.485.9634 • IPaaS Delivered



We recommend that the qualification criteria outlined in the previous section be used as a
benchmark for shortlists that should be invited for an RFP. We also recommend that a "Do
it yourself" option is considered, while keeping in mind that DIYS alternatives generally
tend to be severely underestimated in terms of cost and effort due to human biases.
Additionally DIYS approaches tend to lead to additional maintainability and visibility issues
as they tend to, over time, outgrow the original design which was focused on a specific
problem.

In the RFP, we recommend that vendors are given a few exported MuleSoft projects, with
the request to replicate the flows within the vendor's products in a demo instance. The
vendor should be granted access to a UAT environment where the MuleSoft flow can be
executed. In return, the vendor should share an environment where the customer can see
the demo in action. Ideally, this would be a very low-cost, paid engagement so that
customers can assess the vendor's ability to quickly turn around contracting, onboarding,
and other business support functions.

We recommend that a vendor be judged on their ability to work off Mule projects as
inputs, whether the implementation met or exceeded the capabilities of the Mule projects,
how quickly the vendor was able to accomplish it and provision an environment for the
customer, the vendor's ability to point to an articulate the advantages of their solution,
and lastly the ability of the vendor to engage their business teams to handle contracting
and invoicing. Vendors who are unwilling or unable to execute a simple exercise will either
be plagued with the same organizational inefficiencies as MuleSoft or will not give the
customers the proper respect they deserve.

If the customer is impressed with multiple vendors, there is likely a good business case to
progress them all to the next stage. To reiterate, replacing MuleSoft is a huge decision
and a big undertaking. Investing a little more in the evaluation process will be time and
money well spent to further distinguish the capabilities of the promising vendors that
conducted themselves well in the first phase. Generally, this phase may take 3-6 months
to complete from beginning to end and should require part-time involvement from the
team members conducting the RFP, plus the time to agree to terms and go through
procurement for the next phase. We recommend that the customer identify the critical
metric that pricing will be based on and structure a contract that includes predictable and
favorable terms for the remaining phases. The customer should have a contractual option
that allows them to withdraw from the contract or to mitigate the loss if the vendor's
platform fails to deliver in phase 2.

Poly API Corporation • info@polyapi.io • 650.485.9634 • IPaaS Delivered



Phase 2 - Replace a few representative flows
In this phase, the key is to verify in production that the selected vendor is suitable to
replace MuleSoft. For each vendor chosen, the project's scope should be to implement
3-5 representative Mule projects. The internal team should supply the vendor with the
representative Mule flows and an explanation of their purpose. Each of the projects
should have been selected carefully so that successful implementation of the chosen
projects constitutes technical proof without a doubt of the suitability of the preferred
vendor as a replacement for MuleSoft.

Per the customer's preference, a production instance of the platform should be
instantiated as either a PaaS tenant, managed instance, or Kubernetes deployment. Also,
per the customer's preference, either an internal person or team or a team hired from the
vendor should be tasked with implementing the new integrations, testing them within UAT
environments, and deploying them to production. Subject to a good experience of the
progression and a successful project outcome in production, with the opportunity to
address any customer questions, this should constitute proof that the vendor's solution
was the appropriate decision. We also recommend that you be wary of any vendor who’s
own professional services team cannot deliver time and cost effective integrations on
their platform.

Phase 3 - Build net new services
Assuming a successful phase 2, in phase 3 the customer should stop investing in
developing new integrations on MuleSoft. All new developments should happen on the
new platform. A successful outcome of this phase should be that no new investments are
made in development onMuleSoft. There may still be maintenance, bug fixes, etc… which
are needed to keep the current implementations healthy. There could be cases where, for
some reason or another, new integrations or services must be developed on MuleSoft for
potentially valid reasons like: team capacity, a defect in the new platform that is waiting to
be addressed, or a missing feature. These are understandable, and the customer should
understand that this can happen to a degree, especially if the customer chooses an
up-and-coming platform. However, each occurrence should be taken as a severe warning
and add weight to potentially abandoning the migration. The customer should be cautious
not to fall into the sunk cost fallacy and brute force the migration to continue despite
clear warning signs.

If successful, the new platform should demonstrate its ability as a significantly superior
solution, and the consensus by any generally unbiased team member should be that they
"don't want to go back to the old way of doing things." This stage could take as long as

Poly API Corporation • info@polyapi.io • 650.485.9634 • IPaaS Delivered



months or could take years. There is no sense in rushing this phase. We recommend that
the cost licensing and operating MuleSoft be the primary forcing function to move faster
and that the customer does not create a synthetic motivation to move faster than needed.

Phase 4 - Migration from remaining MuleSoft projects
At this stage, a clear decision should be made to migrate any remaining MuleSoft projects
to the new platform. This should be a focused effort and executed as fast as possible,
ideally by a dedicated person or team to ensure high productivity from being in the zone.
There is a major productivity benefit from being in the zone when replicating so much
work, and there is a cost to running two platforms in parallel. A company may consider
outsourcing this work to accelerate MuleSoft's decommission, as it will likely be an
excellent ROI. Hiring someone experienced with MuleSoft and proficient in the
programming language of the new platform may take much work based on the platform
chosen. Ideally, the new platform requires only knowledge of Java, TypeScript, Python, or
C#, in which case finding developers within the customer organization may be possible.
We recommend iteratively building and launching the replacements to de-risk the
migration further as much as possible. This stage will take a variable amount of time,
depending on the number of flows to be re-written. However, it should take an estimated
two days of development and one day to deploy per Mule flow, assuming the developer is
proficient in both MuleSoft and in the new platform.

Phase 5 - Decommissioning MuleSoft
The final stage will be to turn off all the MuleSoft applications and cancel or notify
MuleSoft that the customer will not renew. There will be time left on the contract, and we
recommend keeping the MuleSoft applications running idle for this duration as a backup
to issues discovered in the new integrations. When MuleSoft is finally turned off, we
recommend that a party be organized to celebrate and recognize all the people who did
the work, as it likely was much work and likely will pay significant dividends for the
company.

Poly API Corporation • info@polyapi.io • 650.485.9634 • IPaaS Delivered



How is Poly different from MuleSoft?
We wrote the previous three sections as neutral and unbiased as possible. At this point,
we will let our biases come out about why Poly is the best alternative. We sincerely
believe each of these points to be true in full and it’s why we built Poly to begin with and
why DIG Ventures invested in Poly. Still, many of the points are subjective, so please keep
in mind that our opinions may not be shared with everyone equally, and we always would
love to hear views that counter ours so that we can grow our understanding of the
domain landscape.

Here, we aim to outline the key differences between MuleSoft and Poly and list the key
benefits of Poly (if any) as we see it.

Consideration MuleSoft Poly Poly Key Benefit

Pricing Model VCore
(unpredictable)

Customer
Defined Metric
(fixed/known)

Metric lines up with customer definition of
value delivered.

Cost of License “High” A fraction Use of OSS and elimination of marketing,
sales commissions and facilities are all
passed through to customers.

Cost/Availability
of Labor

“High” “Normal” Developers proficient in TypeScript,
Python, Java are productive from day one.
No specialized training or “experts”.

Dev Tools Custom VSCode,
Postman, NPM,
PIP, Maven

Leveraging standardized developer tools
improves productivity, happiness,
recruiting and onboarding.

Dev Languages Custom + Java TypeScript,
Python, Java

Higher reach of developers, better
alignment with internal development. C#
(.NET) is on the roadmap.

Source
Management

Source
Persistence +
Sharing

Full Benefits Poly being native TS, Py, Java code allows
for code reviews and linting in addition to
committing & Sharing like MuleSoft.

Test Automation Custom Standard MuleSoft offers an proprietary automated
testing solution while Poly code can be
tested with any customer preferred test
automation solution.

Poly API Corporation • info@polyapi.io • 650.485.9634 • IPaaS Delivered



Deployment
Automation

Standard Standard Effectively equivalent.

API First 1st Class 1st Class Both platforms offer comprehensive APIs.
MuleSoft also offers a UI while Poly is
“headless” at the time of this writing.

Credential
Management

Cred Store +
Custom

Out of Box
HashiCorp
Vault

Poly offers first class management and
storage of credentials in a vault while
MuleSoft requires integration to a Vault.
Poly credentials can be used by reference
and tenancy is implicit in architecture.

Runtime Engine Mule (custom) Node, Python,
Java (JVM)

Poly uses open source proven runtimes,
which affords flexibility in where the loads
are run.

Runtime Infra AWS
(CloudHub)

Self Hosted
Mule

AWS, Azure,
GCP

Self Hosted
Kubernetes or
Node, Python,
Java runtimes

Poly is Kubernetes Native and we use
KNative for running flows. As a PaaS we
offer AWS, GCP, and Azure.

Self hosted customers can run loads
within Kubernetes using KNative or as
standalone Node, Python, Java Apps.

Management
Service Infra

AWS or
Self-Hosting in
other Clouds

Kubernetes
Native or as a
PaaS in AWS,
Azure, GCP

Being Kubernetes Native, Poly’s whole
platform can be hosted by customers
within their own Kubernetes Cluster or
can be hosted in AWS, Azure, GCP as a
PaaS.

Legacy Apps Lots of
Connectors

No Connectors,
customer
connectivity.

Poly falls short compared to MuleSoft
when using legacy transports to connect
to legacy systems. With Poly, developers
can custom build functions which abstract
the legacy systems, but the connectivity
development is up to the customer to
implement.

MuleSoft is a very good platform and has emerged as the top vendor in this domain for
several years. We believe that it’s had a good run but that a new paradigm to integration
development is now here. One that can make developers more productive, happy and will
also save money for enterprises of all sizes. We believe Poly is that product.

Poly API Corporation • info@polyapi.io • 650.485.9634 • IPaaS Delivered



Conclusion
We hope this paper provides a high-level understanding of why customers are interested
in moving away from MuleSoft and the fundamental patterns any vendor needs to support
to be a suitable contender for replacing MuleSoft. We then outlined our recommendations
for the high-level phases, their exit condition, and estimates on how long it should take,
assuming the new vendor was a suitable replacement. Lastly, we compared Poly to
MuleSoft in approach, architecture, and business model. We sincerely hope to be a
contender if your organization decides to evaluate alternatives. We also would appreciate
any feedback about this writing to ensure we are as accurate about this topic as possible,
so please do not hesitate to reach out at info@polyapi.io.

Thank you,

Darko Vukovic
CEO & Founder of PolyAPI

Poly API Corporation • info@polyapi.io • 650.485.9634 • IPaaS Delivered


