
Integrations and Microservices
A Match Made in Heaven

This paper covers the key benefits of using serverless microservices when developing
and running integrations. We start by defining and illustrating the fundamental primitives
(building blocks) of integrations using Poly, then outline the key business and technical
benefits of applying these approaches in production. After reading this paper, we hope
you will better understand why we chose the approach we used in Poly’s architecture and
why we strongly feel it will serve you better as a potential user than a traditional
integration runtime model. We hope this paper is informative for even those not in the
market for an integration platform, as these same concepts and principles can be adopted
more broadly for the software development of integrated applications as well.

Enjoy!

AUTHOR� DARKO VUKOVIC
PUBLICATION DATE� 03/20/24

Note to Competitors
If you are reading this from a Poly competitor, ask yourself why you are working at your
company and reading about innovation in your competitors' whitepapers when you could
instead be working at Poly and pushing innovation forward. If you are driven and want to
be at the forefront, reach out at info@polyapi.io.

Poly API Corporation • info@polyapi.io • 650.485.9634 • IPaaS Delivered



The Primitives
As many of these terms mean different things to different people, below is a list of core
Poly primitives that play into developing integrations using microservices with a short
description of what we mean when we use them. We then provide an illustration of how
these primitives assemble together in a few different use cases. Note that all of this is
written from the perspective of a developer building an integration using a “high code” IDE
such as VS Code or IntelliJ.

API Functions �Operations)
In Poly, each API function is tied to a specific API operation. Think of a function as the
most basic building block. Integrations are typically constructed by combining various
functions. The key role of an API function is twofold: firstly, it gathers the necessary data
from the integration developer for the downstream API. Secondly, it handles the
response, ensuring that it is delivered in a structured manner which is consistent and
type-safe for programming.

For instance, consider a function designed to fetch user details from an API operation.
When this API function is executed, it performs the corresponding API operation –
retrieving the user details – and then returns the actual response from the API. A critical
aspect of Poly is to maintain a seamless alignment between the model (what's defined in
the function) and the actual response, ensuring a 1�1 correspondence.

Poly API Corporation • info@polyapi.io • 650.485.9634 • IPaaS Delivered



Server Functions �Serverless)
Server functions in Poly are a type of serverless computing, meaning they don’t require a
dedicated server to run. Instead, they are managed by Poly and run on Poly’s KNative
platform, which handles their execution automatically. These functions are ideal for
specific, standalone tasks or services that aren’t directly provided by a system’s API.

Think of server functions as specialized tools designed to create new services,
orchestrate workflows, and handle complex integration logic. They’re particularly useful
for developing new features or services that augment existing systems. Additionally,
these server functions have the flexibility to interface directly with other protocols or
databases, offering a powerful means to interact with and manipulate a wide range of
data sources

A vital factor in using server functions (instead of client functions) is considering the
privacy and security of the code and the services they interact with. For example,
consider a token minting/validation service or a database wrapper service. In these cases,
it’s crucial that the underlying mechanics of the server function are not exposed to the
developers using them. This ensures that sensitive details about the function’s operation
are kept secure, and the users of the function cannot alter its code, preserving its
integrity and security.

Poly API Corporation • info@polyapi.io • 650.485.9634 • IPaaS Delivered



Client Functions �Utilities)
Client functions in Poly are similar to server functions, with a key difference: client
functions do not operate on a dedicated runtime. Instead, they execute within the
client application that utilizes them. This approach means that client functions are
inherently language-specific and their source code is accessible to the developers who
use them.

For instance, imagine a pre-built client function that handles data validation within a web
application. Since it’s executed on the client-side, it’s designed specifically for the web
application's programming language, and the developers can view and understand the
source code. This visibility can be beneficial for reuse, learning, and customization.

Client functions excel in providing 'pre-built' code components, significantly enhancing
code reusability. They offer a convenient way to boost productivity among developers,
allowing them to leverage existing code without incurring additional infrastructure costs
or operational overhead. This makes them an excellent tool for building more efficient and
effective client-side applications.

Poly API Corporation • info@polyapi.io • 650.485.9634 • IPaaS Delivered



Webhooks Handlers �HTTP Listeners or APIs)
Webhooks form an essential part of Poly’s core Gateway service. Simply put, webhooks
are configurations that dictate how incoming requests at specific endpoints should be
processed. They represent a set of expectations about the data that will be received.
When we refer to Webhook Handlers in Poly, we are not only talking about processing
these requests but also encompassing the mechanisms for triggering events within Poly
and the functions that automatically subscribe to these events.

From a developer’s perspective, these handlers are versatile. They can be used to create
and expose new APIs to others or to listen for incoming webhook calls. The key
distinction here lies in who defines the interaction interface. When exposing an API, it's
the producer who sets the interface. In contrast, when setting up a webhook listener, it's
the upstream client that dictates the interface, and the integration developer adapts to it.

Think of Webhook Handlers as the broader category of 'Event Handlers.' While currently
focused on HTTP events, in the future, we envision expanding or adapting this
mechanism to include other types of event streams, such as Kafka Topics. For the
purpose of this whitepaper, consider Webhook Handlers as a universal tool for handling
various event-driven interactions.

Poly API Corporation • info@polyapi.io • 650.485.9634 • IPaaS Delivered



Schedulers �Cron Jobs)
In Poly, a scheduler acts as an initiator of events based on specific time configurations,
similar to traditional cron jobs in computing. It is designed to automatically generate event
requests at predetermined times and trigger the execution of one or more server or API
functions, either in parallel or sequentially.

For instance, imagine a scheduler set to initiate a daily batch synchronization of records.
At the scheduled time, it activates the necessary functions to initiate and manage the
backup process.

Schedulers are incredibly versatile and can be employed for a variety of purposes. They
are commonly used for triggering batch processes, conducting regular health and state
checks of systems, automating tests, and handling routine maintenance tasks. Essentially,
they bring automation and reliability to tasks that need to occur at regular intervals,
enhancing efficiency and consistency in operations.

Poly API Corporation • info@polyapi.io • 650.485.9634 • IPaaS Delivered



Variables �Secrets and Configs)
Variables in Poly are essential pieces of information used across integrations,
orchestrations, and backend development. They might contain sensitive data or general
information. The primary characteristic of these variables is their dynamic nature: they
can be updated or managed without the need to re-deploy the entire code. This
flexibility is crucial for maintaining efficiency and responsiveness in a dynamic
development environment.

Variables play a vital role in various applications, such as accessing configurations, storing
credentials, managing mapping files, serving as feature flags, or even holding example
data for testing. They are stored securely in a 'vault' – either the default Poly Vault or, in
the near future, a customer’s own cloud vault. This vault system ensures that sensitive
information is kept secure and only accessible to authorized entities.

To use these variables, they can be retrieved from the vault for local use (in cases where
they aren't secrets) or passed by reference and resolved securely through the Poly proxy
for sensitive data. This approach ensures that variables, especially those containing
secrets, are handled with the utmost security, preventing potential vulnerabilities in the
system.

Poly API Corporation • info@polyapi.io • 650.485.9634 • IPaaS Delivered



The Composites
In the realm of Poly, integrations, orchestrations, and backends are what we refer to as
'composite' types. These are more complex structures that are built using a combination
of the primitives previously described. If we consider the primitives as atoms, the
fundamental building blocks, then these composites are like molecules – each a unique
combination of atoms (primitives) configured for a specific purpose..

Integrations
A typical integration in Poly is generally a set of ‘flows.’ Each flow is essentially a defined
pathway for moving a specific type of data or object from one system to another,
triggered under certain conditions. These conditions can vary - some integrations are
event-driven, reacting to specific occurrences, while others are scheduled, operating as
batch jobs at predetermined times.

An example of an integration could be the automatic synchronization of customer data
between a CRM system and a marketing automation tool. Whenever a new customer is
added to the CRM, the integration flow is triggered, ensuring that the marketing system is
updated with this new information. This process doesn’t create new data; rather, it
ensures that existing data is shared efficiently between systems, enabling them to work
together seamlessly in support of complex business processes.

Poly API Corporation • info@polyapi.io • 650.485.9634 • IPaaS Delivered



Orchestrations
In the landscape of Poly, orchestrations represent a sophisticated form of composition
where new functionalities are developed. These functionalities emerge from the
integration of multiple services from various systems. Essentially, the outcome of an
orchestration is a novel service, complete with its own endpoint, ready for utilization via
Poly functions and HTTPs.

Imagine an orchestration as a maestro conducting an orchestra, where each musician
(service) plays a part. When combined, they create a symphony (a new service) that
didn’t exist before. For instance, an orchestration might take input from a CRM system,
process it through a custom analytics service, and then use a notification service to send
tailored updates to users. The resulting new service, which might offer personalized
customer insights, is an entity in its own right, distinct from its constituent services.

This process of blending multiple services to forge a new, unified service is why
orchestrations are often referred to as 'composite services.' They are particularly
versatile, finding use within integrations or as standalone entities in backend applications.
The defining characteristic of an orchestration is this very act of composition – bringing
together disparate services to create a cohesive, new service offering.

Poly API Corporation • info@polyapi.io • 650.485.9634 • IPaaS Delivered



Backends
In the context of software architecture, 'Backends' refer to services that are specifically
developed to support front-end applications, such as mobile, desktop, or web apps. The
unique aspect of backend services is that they are typically tailored for a particular
front-end, without a primary focus on being reusable by other developers in future
projects.

The main purpose of these backend services is to offload complex logic and processing
from the front-end. This separation of concerns not only makes the front-end application
more streamlined and easier to manage but also contributes significantly to the overall
system’s manageability and security. By shifting intensive tasks to the backend,
developers can ensure better performance, enhance data security, and improve the
observability of the system’s operations.

For instance, in a web application, the backend might handle data processing, user
authentication, and server-side logic, thereby allowing the front-end to focus solely on
presenting a responsive, user-friendly interface. This division ensures that the complex,
behind-the-scenes operations are handled efficiently, paving the way for a smooth and
secure user experience.

We have not included a separate diagram for backends in this paper, as their structure
generally adheres to the server function pattern outlined in the primitives section.
Typically, a backend comprises multiple server functions, each designed to abstract and
process data from various backend systems. The culmination of these functions is a
tailored data model, ideally suited to meet the specific needs of the client application or
developer.

This pattern of leveraging server functions for backend development is not limited to just
internal client applications. It also extends to the creation of specialized APIs and services
geared towards partners. Such an approach is instrumental in facilitating strategic,
bespoke integrations. By adopting this versatile pattern, developers can craft solutions
that not only meet the immediate requirements of a client application but also pave the
way for valuable partnerships and unique integration opportunities.

Poly API Corporation • info@polyapi.io • 650.485.9634 • IPaaS Delivered



Key Benefits
Having defined the primitives and composites in Poly’s architecture, we now turn to the
key technical benefits of this approach and their corresponding business advantages. The
adoption of serverless microservices in developing integrations, orchestrations, and
backends brings forth several significant benefits: Implicit Scaling, Infrastructure
Utilization, Iterative Development, and Code Maintenance and Reuse. Each of these
plays a crucial role in enhancing the efficiency and effectiveness of our system. We will
refer to integrations, orchestrations and backend as “services” or “server functions” in this
section for simplicity.

Implicit Scaling
The first major benefit, Implicit Scaling, is inherently tied to the nature of serverless
functions, particularly when services are run in a serverless infrastructure like KNative.
This setup allows individual server functions to scale up or down autonomously in
response to demand, which is crucial for handling varying loads and traffic spikes. For
developers, this means a significant reduction in the complexities traditionally associated
with managing service scalability, such as load balancing and traffic management.

Moreover, from an operational perspective, the serverless model simplifies the DevOps
team's responsibilities. They can pre-approve the infrastructure setup without needing to
be constantly involved in capacity planning for each new service. This translates to
faster deployment times, as there is no need for provisioning infrastructure – it's
already available and adaptable to the service's needs. Integrations and services can be
deployed much faster, bringing agility and efficiency to the development process.

Infrastructure Utilization
The second key benefit is the significant improvement in infrastructure utilization. This is
achieved by reducing idle time in services and minimizing the active container footprint –
a crucial factor in cloud computing efficiency. In most scenarios, integrations are not
constantly active; they are often idle, waiting for specific events or triggers. It is relatively
rare for integrations to operate under a sustained high load for a long time.

Traditional models often require services to be ready for peak capacity at all times,
leading to a substantial waste of resources due to idle services. However, with Poly’s
serverless approach, services that perform batch jobs or can tolerate brief wake-up times
(like 5�8 seconds) are allowed to 'sleep' when not in use. This minimizes idle resources
and ensures that only the necessary services are active at any given time.

Poly API Corporation • info@polyapi.io • 650.485.9634 • IPaaS Delivered



Furthermore, the intrinsic ability of the system to scale implicitly allows for a more precise
approximation to the actual load, keeping the unit of compute smaller and more efficient.
This means that even the services which have to idea due to their latency sensitivity can
be configured to use a smaller footprint. These aspects of serverless architecture
optimize resource usage and also translate into a significant reduction in compute
infrastructure costs for Poly customers. By smartly managing resource allocation,
customers can enjoy a more cost-effective and environmentally friendly cloud computing
experience.

Iterative Development
The third major benefit within Poly’s ecosystem is the facilitation of Iterative Development,
owing to each service or server function having its own development lifecycle �SFLC�.
This distinct lifecycle for each service means that smaller components can be developed
and deployed to production much more rapidly than in traditional models. Such
granularity leads to a significant advantage: the parallelization of development. It
allows multiple developers to work simultaneously on different aspects of the same
project.

In practical terms, an integration can be broken down into several independent flows,
each being developed concurrently. Similarly, a composite service can be divided into
multiple client functions, each with its own interface. These functions can be developed in
isolation and later integrated into a higher-order server function. This modularity also
enables front-end developers to begin building against completed server functions while
backend developers continue working on others.

A crucial aspect of this approach is the clear definition and documentation of interfaces
between these small, independent units, a process that Poly manages implicitly during
deployment. Moreover, Poly’s architecture supports the use of multiple programming
languages for server functions. This diversity allows different functions, developed in their
native languages, to be utilized in conjunction with one another. SDKs generated on top of
each server function deployed to Poly further enhance this interoperability, providing a
seamless integration experience across diverse programming environments.

CodeMaintenance and Reuse
The final major benefit within Poly’s framework is the enhanced code maintenance and
reuse made possible by systematic cataloging of services. This cataloging facilitates
easier identification and reuse of services. When those services require updates or

Poly API Corporation • info@polyapi.io • 650.485.9634 • IPaaS Delivered



evolution, the scope of retesting is substantially reduced. Maintaining interfaces or
ensuring backward compatibility allows independent microservices to be updated without
affecting others. This approach not only simplifies code maintenance but also accelerates
the evolution of services.

Poly aids in reuse in several key ways. Firstly, it maintains a comprehensive catalog of all
API, Server, and Client functions. This catalog serves as a foundation for various
discovery methods, including search, prompt, and browse functionalities. Looking ahead,
we anticipate integrating AI recommendations, similar to services like GitHub Copilot, to
further streamline this process.

A significant innovation in Poly is the concept of client functions. These functions,
capable of being utilized within many server functions, represent an efficient approach to
code execution. This contrasts with the alternative of spinning up multiple server
functions for minor tasks, which could result in excessive overhead from RPC invocations
and container runtime management. Client functions centralize code management, and
when they are updated, these changes automatically propagate to all server functions
that use them. This means code can be managed in one place and disseminated
effortlessly to all relevant integrations. Such an architecture marks a substantial leap
forward in code maintenance efficiency and greatly enhances reusability.

Poly API Corporation • info@polyapi.io • 650.485.9634 • IPaaS Delivered



Conclusion
This paper outlines the compelling advantages of leveraging serverless architecture for
developing integrations, orchestrations, and backends. Poly harnesses this innovative
approach, leading to significant enhancements in developer productivity. This productivity
gain is achieved through simplified capacity planning, enabling parallel development, and
fostering more efficient code maintenance and reuse. Beyond these technical benefits,
our approach also translates into more tangible business advantages - notably lower
development and infrastructure costs and faster delivery times for our Poly customers.

Our choice of this architectural paradigm was deliberate and aimed at capitalizing on the
latest technological advancements. We have developed a comprehensive framework
within Poly to make these benefits a reality for enterprise integration development. This
framework is not just about meeting today's needs but is a testament to our commitment
to innovation and future readiness.

If Poly's approach resonates with your enterprise's vision or if you are curious about how
it can specifically benefit your organization, we encourage you to reach out for a more
detailed discussion at info@polyapi.io.

Thank you for your time and interest.

Darko Vukovic
CEO & Founder of PolyAPI

Poly API Corporation • info@polyapi.io • 650.485.9634 • IPaaS Delivered

mailto:info@polyapi.io

