
Enhanced API security with innovative and
comprehensive protection methods.

Darko Vukovic



Summary

In the burgeoning digital landscape, where Application Programming Interfaces form the
backbone of interconnectivity, ensuring their security has become paramount. PolyAPI
emerges as an innovative player in this field, offering advanced solutions designed to
counter the risks threatening API ecosystems. From data breaches to unauthorized
intrusions, the potential perils can undermine an organization's credibility and financial
health. This whitepaper tells the story of how PolyAPI's state-of-the-art techniques and
methodologies reinforce the digital fortifications that businesses rely on.

The urgency of fortifying API security is echoed by startling statistics: 74% of
organizations reported at least three API-related data breaches in the past two years,
indicating a critical need for enhanced security measures. As APIs expand the attack
surface across technology stacks—a sentiment shared by 58% of industry
professionals—the challenges in managing API sprawl, accurate inventories, and
third-party access grow increasingly complex. Even with tools like Web Application
Firewalls WAF and Web Application and API Protection WAAP, over half of the
organizations lack complete confidence in their current API security solutions. With 61% of
organizations anticipating an increase in API risks over the next two years, the need for
robust and innovative security solutions like those offered by PolyAPI has never been
more pressing.

Traceable. (2023). https://www.traceable.ai/2023-state-of-api-security

1



Table of Contents

Summary 1

Table of Contents 2

Introduction 3

Credential Management 3

The Risk of Leaked API Secrets 3

Introducing Vari: Reinventing the Security of Secrets 4

How Poly Safeguards Your API Secrets 5

The Crucial Difference: Zero Access to API Secrets 6

Self-service Credential Provisioning via Vari 6

Simplifying & Securing OAuth 7

Initial Configuration 7

Operation 7

Event Driven Architecture & Error Handling 8

Integration with Security Information and Event Management (SIEM) & Real-Time Ops

Platforms 9

Proactive Response 9

Integration With Security Orchestration, Automation, and Response (SOAR) Platforms 10

Additional Benefits 10

API Shaping & Scoping 11

Example Scenario 12

Reduced Attack Surface 12

Least Privilege In Action 13

True Multi-Tenancy via Secure Design 13

Conclusion 15

2



Introduction
API security has transcended the realm of being merely important; it has evolved into an
indispensable aspect of numerous business operations. The consequences of lax API
security can be catastrophic, with data breaches, unauthorized access, and service
disruptions posing significant risks to an organization's integrity and financial stability. It is
in this landscape that PolyAPI stands out by providing a number of solutions to these
problems, tailored to meet the evolving demands of the modern enterprise.

In the pages that follow, we will elucidate how PolyAPI leverages innovative techniques
and robust methodologies to fortify API security, providing peace of mind to businesses,
their clients, and their stakeholders. Including things such as credential management,
detection / response mechanisms, and access control, PolyAPI’s capabilities offer a
comprehensive approach to safeguarding your use of APIs.

By the end of this whitepaper, you will have a profound understanding of how PolyAPI
empowers organizations to embrace the API-driven future with confidence and resilience,
securing the vital links that fuel the digital economy.

Credential Management

The Risk of Leaked API Secrets
While application owners should do everything in their power to prevent vulnerabilities, it
is unreasonable to expect that it will always be possible to produce a product with no
security related defects. Thus, our threat model should assume that at some point a
breach is likely to occur. Depending on the severity of the vulnerability involved, this could
result in the attacker gaining full control of the application. This attack scenario is our
starting point. From here, the attacker steals the secret and uses it for nefarious
purposes.

3



Introducing Vari: Reinventing the Security of Secrets
Poly takes an innovative approach designed to protect sensitive API secrets, even in the
face of a cyber attack. Unlike traditional applications, which access secrets through
environment variables, a config file, or a secrets management service, Poly manages
secrets on behalf of the application using the Vari service and allows API clients to use
those secrets by reference, rather than by value.

Some readers may notice a parallel between this and the approach that some
organizations already take to protect sensitive PII data via tokenization. In the same vein,
Poly tokenizes credentials.

4



How Poly Safeguards Your API Secrets
When your application uses Poly as its universal API client, the API secrets there were
previously available are no longer directly accessible by the application. Instead, Poly acts
as a secure intermediary between your application and the third-party services. Here's
how it works:

1. Poly API Client Integration: Your application integrates the Poly API client, replacing the
traditional API client it was using previously.

2. Request Forwarding to Poly Server: When your application needs to make an API
request it calls the corresponding API function on the Poly server.

3. API Secret Addition: The Poly server securely adds the required API secret to the
request before forwarding it to the respective API provider. This can either be invoked
manually via code or automatically via configuration on the Poly server.

4. Response Handling: The response from the API provider is sent back to the Poly
server, which then returns it to your application.

5



The Crucial Difference: Zero Access to API Secrets
The most crucial aspect of Poly's security lies in the fact that, at no point, are the API
secrets accessible by your application. By removing the secrets from the application
altogether, Poly ensures that even if your application falls victim to a cyber attack, the
attackers won't be able to retrieve these secrets and, subsequently, won't have
unauthorized access to your API provider.

This design follows the established security principle of isolation and
compartmentalization. Just like a submarine can withstand an attack by sealing off
flooded compartments, Poly reduces the blast radius of a successful hack by denying
access to protected secrets.

Because of this, Poly can be used as part of a greater defense in depth security strategy.
While a number of preventative controls can be applied to prevent a successful attack in
the first place, Poly serves as a second line of defense in case the initial controls fail.

Self-service Credential Provisioning via Vari
Imagine your organization wants to create an integration for several of your customers to
use. The usual procedure for this looks like the following:

1. Create the integration and present it to your customers
2. Customers approve and send their API credentials to your ops team
3. Your ops team adds your customers' API credentials to the integration configuration
4. Integration is now ready to use

Now reimagine this scenario with Poly:

1. Create the integration and present it to your customers
2. Customers approve and have their own ops team add their API credentials to the vault
3. Integration is now ready to use

With self-service credential provisioning you can enable your customers to manage and
operate their integrations without any contact or credential exchange with your ops team,
eliminating unnecessary friction and the need to expose sensitive credentials.

Lastly, imagine a case where your customer needs to rotate their credentials, either
because of a security incident or a regular credential rotation policy. In a typical
integration, they must once again contact your ops team, transfer the new credentials,
and wait until the process is complete. With Poly, rotating credentials is just as seamless
as the initial provisioning process, everything can be taken care of by the customer

6



themselves and the Poly operator is no longer the bottleneck. This represents a major
evolution from business as usual.

Simplifying & Securing OAuth
When it comes to accessing API providers, OAuth is one of the most popular protocols for
obtaining access tokens, and thus it is extremely important from a security perspective.
Unfortunately, setting up and using OAuth is a consistent pain point for many developers.
Poly makes it easier for developers to deal with OAuth by simplifying the process of
getting and handling tokens. Not only is this more convenient from a developer
experience perspective, it is also a more secure one.

Initial Configuration
Setting up an OAuth client is straightforward, there is no code to write and all OAuth
settings are intuitively mapped to a config that is updated via API. Once the client is
configured, there is also an additional brief step which involves creating a server-side
custom function which will handle calling the OAuth client, injecting the necessary client
credentials, and finally handling the response. An example code snippet can be requested
from Poly to use as a template.

Operation
After the initial configuration, retrieving the token becomes as easy as calling a single
function:

1. Server side custom function getToken() called by API client
2. Custom function calls OAuth client and passes client secret by reference
3. OAuth client retrieves OAuth client secret from Vault
4. Client secret is sent to OAuth Server
5. OAuth Server responds with access token and refresh token
6. Refresh token stored in Vault
7. Access token returned to custom function
8. Custom function stores access token in Vault and a reference is returned to the

custom function
9. Access token reference is returned to the client

7



Using the token is just as simple. There isn’t even any need to worry about manually
refreshing it as the custom function that was setup previously can handle that logic all on
its own:

1. API client calls the getToken() custom function
2. Custom function checks if token is expired
3. If token is expired, a new one is fetched
4. A token by reference is returned to the client
5. Client calls API function with access token reference
6. API function retrieves access token from Vault
7. API function calls the API provider with the access token
8. API provider returns response to Poly
9. Poly returns the response to the API client

Event Driven Architecture & Error Handling
Poly has an event driven architecture which emits an event any time an error occurs. In
concert with this, it supports the implementation of custom error handlers which can be
scoped to specific functions. This provides the system operator with a number of
potential benefits, primarily, alerting and responding.

8



Integration with Security Information and Event Management
(SIEM) & Real-Time Ops Platforms
For instance, if a particular type of error is triggered, it could signal that an attack on the
system is occurring. The error handler can respond by raising an alert, either in a Security
Information and Event Management (SIEM) system or in a real-time operations system
such as Pagerduty.

Proactive Response
Beyond simple reporting and alerting, Poly can actually take proactive measures to handle
whatever is occurring at the time in the system. This includes things such as blocking a
particular state change in the system, or even rolling back a state change in the system
which has already occurred. Being able to take action within the platform itself is useful in
the sense that it happens in real-time and there is more context available, thus enabling a
more intelligent and robust response.

9



Integration With Security Orchestration, Automation, and
Response (SOAR) Platforms
Some teams may already have complex incident response automations setup via a
Security Orchestration, Automation, and Response (SOAR) platform. In this case, Poly can
call out to these systems and provide the context necessary to kick off any number of
sophisticated flows. The close integration of these two platforms can provide a response
capability that isn’t possible to achieve with only one platform alone.

Centralizing this type of logic means that it won’t need to be applied to each individual
client. Those who have built and implemented security controls before understand that
half of the battle involves not just the development of the control, but the consistent
application of it.

Additional Benefits
Lastly, there are a number of non-security related benefits as well. Not all errors and
events signify an attack, some might simply be indicators of a benign system
misconfiguration or unexpectedly altered system state. From an operational perspective,
this information and the ability to respond to it is useful beyond the scope of just security.

10



API Shaping & Scoping
Access control is a critical aspect of any system that deals with sensitive data or
functionality. Traditionally, the level of access provided to an API client was largely
derived from the scope of the token. While this is effective to a degree, the range of
scopes offered by the API provider may not be sufficiently granular to restrict access in
the exact way desired.

Multiple clients present an additional challenge. The presence of multiple clients implies
that they likely serve different functions, and thus require different scopes. However, in
the case that the API provider only allows the consumer to register a single client per
tenant, the set of allowed scopes in the client configuration must become a combination
of all the scopes necessary for each client. In such a scenario, a well-intentioned
developer may inadvertently request a token which contains scopes that are not essential
to the use case at hand. This type of error violates the security principle of least privilege
and creates new risks for both the consumer and provider involved.

Poly facilitates least privilege with its capability to shape and scope access to APIs
without relying on control mechanisms from the provider. Instead, a tenant can selectively
train certain functions, thus restricting access to only a subset of the total endpoints
available.

11



Example Scenario
Suppose an organization wants to enable better integration with their ERP platform. They
begin by identifying which modules they want to expose. Next, Poly functions are created
for those and only those modules.

Let’s say that in our example the organization wants to enable access to the customer
relationship management module, but not the manufacturing and warehouse management
modules. Poly can accomplish this goal with ease.

Reduced Attack Surface
Since ERP platforms can have a massive amount of modules and capabilities, allowing
your applications to access them without restrictions exposes a significant attack surface.
Likewise, using Poly to restrict API access greatly reduces this attack surface.

For instance, a module that allows uploading and downloading of files may become a
primary vector for spreading malware. Poly can block your client’s access to such high
risk modules while still facilitating the normal traffic needed to run the business. This way,
if an application in your own system is somehow compromised, you will still be able to
prevent the spread of the attack and protect your partner ecosystem because the blast
radius of the attack is significantly reduced. Partners which understand that you are
capable of applying such controls are likely to perceive your security posture as being

12



mature, thus enabling more trust between your organizations, and ultimately, more
business.

Least Privilege In Action
The main idea is simple: restricting access to certain APIs can greatly reduce the potential
for both accidental misuse and deliberate abuse. The more challenging part is actually
implementing the idea in a reliable fashion. Poly can accomplish this effectively because
centralizing traffic makes the traffic easier to control.

True Multi-Tenancy via Secure Design
Poly's architecture is designed to foster true multi-tenancy, a feature that sets it apart
from other integration platforms in the industry. Many of these platforms have notable
deficiencies in this specific area. Their access controls often lack the robustness and
flexibility required to prevent integration developers from inadvertently misconfiguring a
tenant they did not intend to. This deficiency results in a troubling lack of separation in
data, configuration, and functionality, which can lead to numerous issues.

A common scenario encountered on such platforms involves companies which specialize
in creating and maintaining integrations for their customers. The goal is to use a common
flow or integration to service multiple customers to avoid having to instantiate a set of
flow or application per customer. In this case the flows or applications should be
completely logically isolated from one another. Unfortunately, due to the nature of these
platforms, they essentially end up working with a single configuration/secrets table or file
which contains the credentials/configuration for all customers. This practice constitutes a
significant anti-pattern in the integration world, hindering not only efficiency and
maintainability, but security as well.

13



Poly, in contrast, prioritizes security through thoughtful design and architecture. It
accomplishes this by employing unique API keys for each tenant and every environment
within that tenant. Each instance of a custom function being executed (akin to a flow in
other iPaaS platforms) is done within the context of a single environment (customer).
Credentials and configurations are logically separated per customer while the code
executing the logic can still be written once and shared. This approach eliminates the
potential for integrators to make mistakes, such as applying the wrong configuration to a
customer's integration. Poly's commitment to these principles ensures that data and
configurations remain secure and separate, offering a superior multi-tenant integration
experience.

14



Conclusion
We encourage you to take the next step towards safeguarding your API infrastructure by
delving deeper into the capabilities of the PolyAPI. Now is the time to take action and
ensure the resilience of your API ecosystem. To learn more about how PolyAPI can benefit
your organization and to experience its capabilities firsthand, we invite you to explore a
risk-free demo of our product.

Don't wait; get started today by visiting our website, where you can access more in-depth
resources, try out the platform, and engage with our experts. PolyAPI is your trusted
partner in securing your API usage and fostering a safer, more interconnected world. Join
us in this transformative journey and embrace the future with confidence.

15

https://polyapi.io

